Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.038
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2321975121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557190

RESUMO

Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.


Assuntos
Flores , Proteínas de Domínio MADS , Ervilhas , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ervilhas/genética , Ervilhas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Ervilha/genética
2.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579009

RESUMO

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adesão Celular/genética , Pectinas/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Parede Celular/metabolismo
3.
Physiol Plant ; 176(2): e14287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606719

RESUMO

Salt stress substantially leads to flowering delay. The regulation of salt-induced late flowering has been studied at the transcriptional and protein levels; however, the involvement of secondary metabolites has rarely been investigated. Here, we report that FMOGS-OXs (EC 1.14.13.237), the enzymes that catalyze the biosynthesis of glucosinolates (GSLs), promote flowering transition in Arabidopsis thaliana. It has been reported that WRKY75 is a positive regulator, and MAF4 is a negative regulator of flowering transition. The products of FMOGS-OXs, methylsulfinylalkyl GSLs (MS GSLs), facilitate flowering by inducing WRKY75 and repressing the MAS-MAF4 module. We further show that the degradation of MS GSLs is involved in salt-induced late flowering and salt tolerance. Salt stress induces the expression of myrosinase genes, resulting in the degradation of MS GSLs, thereby relieving the promotion of WRKY75 and inhibition of MAF4, leading to delayed flowering. In addition, the degradation products derived from MS GSLs enhance salt tolerance. Previous studies have revealed that FMOGS-OXs exhibit alternative catalytic activity to form trimethylamine N-oxide (TMAO) under salt stress, which activates multiple stress-related genes to promote salt tolerance. Therefore, FMOGS-OXs integrate flowering transition and salt tolerance in various ways. Our study shed light on the functional diversity of GSLs and established a connection between flowering transition, salt resistance, and GSL metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oxigenases , Arabidopsis/metabolismo , Tolerância ao Sal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos
4.
Physiol Plant ; 176(2): e14240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561015

RESUMO

Under stress conditions, plants modulate their internal states and initiate various defence mechanisms to survive. The ubiquitin-proteasome system is one of the critical modules in these mechanisms, and Plant U-Box proteins play an important role in this process as E3 ubiquitin ligases. Here, we isolated the Plant U-box 24 gene CaPUB24 (Capsicum annuum Plant U-Box 24) from pepper and characterized its functions in response to drought stress. We found that, compared to the other CaPUBs in the same group, the expression of CaPUB24 was significantly induced by drought stress. We also found that CaPUB24 was localized to the nucleus and cytoplasm and had E3 ubiquitin ligase activity. To investigate the biological role of CaPUB24 in response to drought stress further, we generated CaPUB24-silenced pepper plants and CaPUB24-overexpressing Arabidopsis transgenic plants. CaPUB24-silenced pepper plants exhibited enhanced drought tolerance compared to the control plants due to reduced transpirational water loss and increased abscisic acid (ABA) sensitivity. In contrast, CaPUB24-overexpressing Arabidopsis transgenic plants exhibited reduced drought tolerance and ABA-insensitive phenotypes. Our findings suggest that CaPUB24 negatively modulates drought stress response in an ABA-dependent manner.


Assuntos
Arabidopsis , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Secas , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
5.
Mol Plant Pathol ; 25(4): e13447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561315

RESUMO

Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Reprodutibilidade dos Testes , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/farmacologia , Imunidade Vegetal/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
6.
Planta ; 259(5): 115, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589536

RESUMO

MAIN CONCLUSION: A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.


Assuntos
Arabidopsis , Oryza , Glicosiltransferases/análise , Oryza/metabolismo , Xilanos/metabolismo , Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , 60613 , Poaceae/metabolismo , Parede Celular/metabolismo
7.
Methods Mol Biol ; 2795: 17-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594523

RESUMO

Hypocotyl elongation in Arabidopsis is widely utilized as a readout for phytochrome B (phyB) signaling and thermomorphogenesis. Hypocotyl elongation is gated by the circadian clock and, therefore, it occurs at distinct times depending on day length or seasonal cues. In short-day conditions, hypocotyl elongation occurs mainly at the end of nighttime when phyB reverts to the inactive form. In contrast, in long-day conditions, hypocotyl elongation occurs during the daytime when phyB is in the photoactivated form. Warm temperatures can induce hypocotyl growth in both long-day and short-day conditions. However, the corresponding daytime and nighttime temperature responses reflect distinct underpinning mechanisms. Here, we describe assays for dissecting the mechanisms between daytime and nighttime thermoresponsive hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fitocromo B/metabolismo , Luz
8.
Methods Mol Biol ; 2795: 75-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594529

RESUMO

Plants exhibit an impressive capability to detect and respond to neighboring plants by closely monitoring changes in the light spectrum. They possess the ability to perceive adjustments in the ratio of red (R) to far-red (FR) light (R/FR) triggered by the presence of nearby plants, even before experiencing complete shading. When the R/FR ratio falls below 1, plants activate a shade avoidance response that manifests as hypocotyl elongation. Furthermore, elevated ambient temperatures can also stimulate hypocotyl elongation. As hypocotyl elongation is a visible characteristic, it is a valuable indicator for monitoring shade avoidance response, warm ambient temperature response, and the interplay between the two.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura , Hipocótilo/metabolismo , Luz , Regulação da Expressão Gênica de Plantas
9.
Methods Mol Biol ; 2795: 105-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594532

RESUMO

In this method, we employed HEK293T cells to express the plant photoreceptor phytochrome B (phyB). Through the application of various treatments such as phycocyanobilin (PCB) supplementation, red light exposure, and temperature adjustments, the phyB proteins exhibited liquid-liquid phase separation, leading to the formation of biomolecular condensates. Here, we present a comprehensive description of the protein expression, cell treatment, and imaging capture procedures. This detailed guide provides step-by-step instructions on how to induce phase separation of phyB proteins in HEK293T cells. By utilizing this approach, researchers can investigate the physicochemical characteristics and dynamic formation process of phyB photobodies with precision.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Humanos , Fitocromo B/metabolismo , Fitocromo/metabolismo , Proteínas de Arabidopsis/metabolismo , Células HEK293 , Arabidopsis/metabolismo , 60422 , Fatores de Transcrição/metabolismo , Luz , Células Fotorreceptoras/metabolismo
10.
Methods Mol Biol ; 2795: 95-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594531

RESUMO

Photobodies (PBs) are subnuclear membraneless organelles that self-assemble via the condensation of the plant photoreceptor and thermosensor phytochrome B (phyB). Changes in the light and temperature environment directly modulate PB formation and maintenance by altering the number and size of PBs. In thermomorphogenesis, increases in the ambient temperature incrementally reduce the number of PBs, suggesting that individual PBs possess distinct thermostabilities. Here, we describe a detailed protocol for characterizing cell type-specific PB dynamics induced by warm temperatures in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Temperatura , Regulação da Expressão Gênica de Plantas
11.
Methods Mol Biol ; 2795: 123-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594534

RESUMO

Phase separation is an important mechanism for regulating various cellular functions. The EARLY FLOWERING 3 (ELF3) protein, an essential element of the EVENING COMPLEX (EC) involved in circadian clock regulation, has been shown to undergo phase separation. ELF3 is known to significantly influence elongation growth and flowering time regulation, and this is postulated to be due to whether the protein is in the dilute or phase-separated state. Here, we present a brief overview of methods for analyzing ELF3 phase separation in vitro, including the generation of phase diagrams as a function of pH and salt versus protein concentrations, optical microscopy, fluorescence recovery after photobleaching (FRAP), and turbidity assays.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , 60422 , Mutação , Luz , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica de Plantas , Ritmo Circadiano/fisiologia
12.
Methods Mol Biol ; 2795: 161-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594537

RESUMO

The PHYTOCHROME INTERACTING FACTORs (PIFs) play pivotal roles in regulating thermo- and photo-morphogenesis in Arabidopsis. One of the main hubs in thermomorphogenesis is PIF4, which regulates plant development under high ambient temperature along with other PIFs. PIF4 enhances its own transcription and PIF4 protein is stabilized under high ambient temperature. However, the mechanisms of thermo-stabilization of PIF4 are less understood. Recently, it was shown that SUPPRESSOR OF PHYA-105 1 (SPA1) can function as a serine/threonine kinase to phosphorylate PIF4 in vitro, and the phosphorylated form of PIF4 is more stable under high ambient temperature conditions. In this chapter, we describe the in vitro kinase assay of PIF4 by SPA1. In principle, this protocol can be applied for other putative substrates and kinases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Arabidopsis/metabolismo , Fitocromo/metabolismo , Desenvolvimento Vegetal , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Ciclo Celular/metabolismo
13.
Methods Mol Biol ; 2795: 113-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594533

RESUMO

Phytochrome B (phyB), a plant photoreceptor, forms a membraneless organelle known as a photobody. Here, we present a protocol for the isolation of phyB photobodies through fluorescence-activated particle sorting from mature transgenic Arabidopsis leaves expressing phyB-GFP. This protocol involves the isolation of nuclei from frozen ground leaves using sucrose gradient centrifugation, the disruption of nuclear envelopes by sonication, and the subsequent isolation of phyB photobodies through fluorescence-activated particle sorting. We include experimental tips and notes for each step.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo B/metabolismo , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Células Fotorreceptoras/metabolismo , Luz
14.
Methods Mol Biol ; 2795: 195-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594540

RESUMO

The phytochrome-interacting factor 4 (PIF4) is a well-known transcription factor that plays a pivotal role in plant thermomorphogenesis, coordinating growth and development in response to temperature changes. As PIF4 functions by forming complexes with other proteins, determining its interacting partners is essential for understanding its diverse roles in plant thermal responses. The GST (glutathione-S-transferase) pull-down assay is a widely used biochemical technique that enables the investigation of protein-protein interactions in vitro. It is particularly useful for studying transient or weak interactions between proteins. In this chapter, we describe the GST pull-down approach to detect the interaction between PIF4 and a known or suspected interacting protein. We provide detailed step-by-step descriptions of the assay procedures, from the preparation of recombinant GST-PIF4 fusion protein to the binding and elution of interacting partners. Additionally, we provide guidelines for data interpretation, quantification, and statistical analysis to ensure robust and reliable results.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Methods Mol Biol ; 2795: 183-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594539

RESUMO

Phytochromes are red (R) and far-red (FR) light photoreceptors in plants. Upon light exposure, photoactivated phytochromes translocate into the nucleus, where they interact with their partner proteins to transduce light signals. The yeast two-hybrid (Y2H) system is a powerful technique for rapidly identifying and verifying protein-protein interactions, and PHYTOCHROME-INTERACTING FACTOR3 (PIF3), the founding member of the PIF proteins, was initially identified in a Y2H screen for phytochrome B (phyB)-interacting proteins. Recently, we developed a yeast three-hybrid (Y3H) system by introducing an additional vector into this Y2H system, and thus a new regulator could be co-expressed and its role in modulating the interactions between phytochromes and their signaling partners could be examined. By employing this Y3H system, we recently showed that both MYB30 and CBF1, two negative regulators of seedlings photomorphogenesis, act to inhibit the interactions between phyB and PIF4/PIF5. In this chapter, we will use the CBF1-phyB-PIF4 module as an example and describe the detailed procedure for performing this Y3H assay. It will be intriguing and exciting to explore the potential usage of this Y3H system in future research.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fitocromo , Proteínas de Saccharomyces cerevisiae , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transativadores/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Methods Mol Biol ; 2795: 227-238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594542

RESUMO

In plants, complex signaling networks monitor and respond to environmental cues to determine the optimal time for the transition from the vegetative to reproductive phase. Understanding these networks requires robust tools to examine the levels and subcellular localization of key factors. The florigen FLOWERING LOCUS T (FT) is a crucial regulator of flowering time and occurs in soluble and membrane-bound forms. At low ambient temperatures, the ratio of these forms of FT undergoes a significant shift, which leads to a delay in the onset of flowering. To investigate these changes in FT localization, epitope-tagged FT protein can be isolated from plants by subcellular fractionation and its localization examined by immunoblot analysis of the resulting fractions. However, the highly abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) can interfere with methods to detect and characterize low-abundance proteins such as FT. In this chapter, we present a method for analyzing the ratio of HA-tagged FT (HA:FT) in different subcellular fractions while mitigating the interference from RuBisCO by using protamine sulfate (PS) to deplete RuBisCO during protein purification, thereby enhancing HA:FT detection in fractionated samples.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Florígeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Flores/metabolismo
17.
Methods Mol Biol ; 2795: 213-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594541

RESUMO

Understanding gene expression dynamics in the context of the time of day and temperature response is an important part of understanding plant thermotolerance in a changing climate. Performing "gating" experiments under constant conditions and light-dark cycles allows users to identify and dissect the contribution of the time of day and circadian clock to the dynamic nature of stress-responsive genes. Here, we describe the design of specific laboratory experiments in plants (Arabidopsis thaliana and bread wheat, Triticum aestivum) to investigate temporal responses to heat (1 h at 37 °C) or cold (3 h at 4 °C), and we include known marker genes that have circadian-gated responses to temperature changes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Temperatura , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas
18.
BMC Plant Biol ; 24(1): 257, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594609

RESUMO

BACKGROUND: Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS: We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS: Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.


Assuntos
Arabidopsis , Oryza , Genes de Plantas , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Enxofre/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Raízes de Plantas/metabolismo
19.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558238

RESUMO

Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the previously identified interactome of the Transport Protein Particle II (TRAPPII) complex required for TGN structure and function. We identified physical and genetic interactions between AtTRAPPII and shaggy-like kinases (GSK3/AtSKs) and provided in vitro and in vivo evidence that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the AtTRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosforilação , Transporte Proteico , Rede trans-Golgi/metabolismo , Proteínas de Transporte/metabolismo
20.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563568

RESUMO

In multicellular organisms, specialized tissues are generated by specific populations of stem cells through cycles of asymmetric cell divisions, where one daughter undergoes differentiation and the other maintains proliferative properties. In Arabidopsis thaliana roots, the columella - a gravity-sensing tissue that protects and defines the position of the stem cell niche - represents a typical example of a tissue whose organization is exclusively determined by the balance between proliferation and differentiation. The columella derives from a single layer of stem cells through a binary cell fate switch that is precisely controlled by multiple, independent regulatory inputs. Here, we show that the HD-Zip II transcription factors (TFs) HAT3, ATHB4 and AHTB2 redundantly regulate columella stem cell fate and patterning in the Arabidopsis root. The HD-Zip II TFs promote columella stem cell proliferation by acting as effectors of the FEZ/SMB circuit and, at the same time, by interfering with auxin signaling to counteract hormone-induced differentiation. Overall, our work shows that HD-Zip II TFs connect two opposing parallel inputs to fine-tune the balance between proliferation and differentiation in columella stem cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Células-Tronco/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Meristema/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...